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Front-curvature effects in the dynamics of a confined optically thin isotropic plasma, which
is heated by an external energy source and cools radiatively, are investigated under conditions
of thermal bistability. Reduced governing equations for such a plasma are derived, based on the
elimination of the acoustic modes. Possible large-scale equilibria, describing segregation of the
plasma into two “phases,” dense and cool, and rarefied and hot, are found. Only objects with a
constant mean curvature of their boundaries (the simplest of these are slabs, cylinders, and spheres)
are shown to represent such equilibria. The curvature introduces a small correction to the “area rule”
value of the equilibrium plasma pressure. The governing equations are reduced further and employed
for stability analysis of individual equilibrium objects and of their ensembles. An equilibrium slab
is found to be stable with respect to arbitrary perturbations. Similarly, a circular or spherical
“drop” (or “bubble”) is stable with respect to deformations of their shape. On the contrary, the
same drop or bubble can be unstable with respect to a purely radial mode, and stability arguments
determine the minimum possible radius of these objects. Ensembles of drops or bubbles show
strong background-mediated competition (Ostwald ripening). Possible self-similar asymptotics of
the time-dependent distribution of a large number of drops with respect to their radii are found.
Two-dimensional numerical simulations of the dynamics of a confined bistable plasma are performed
in a square “box”. When starting from a broadband noise perturbation around a uniform state,
we observe radiative segregation of the plasma, followed by background-mediated competition and
establishment of either the slab-type, or the drop (or bubble)-type equilibrium. Finally, deformation
instability of planar “evaporation” fronts, similar to the Darrieus-Landau instability of the laminar

JULY 1995

Front-curvature effects in the dynamics of confined radiatively bistable plasmas:

flame propagation, is found.

PACS number(s): 52.35.Py, 47.70.Mc, 47.54.+r1, 95.30.Qd

I. INTRODUCTION

Thermal bistability of optically thin plasmas, which
are subject to some heating and cool radiatively, have at-
tracted considerable attention, mainly because of astro-
physical applications [1]. Thermal bistability manifests
itself in segregation of the plasma into two locally stable
phases (cool and dense, and hot and rarefied). Radia-
tive condensation instability (RCI), first considered by
Field [2], is intrinsically related to thermal bistability.
The RCI is believed to play an important role in the de-
velopment of such diverse plasma objects as interstellar
[1] and intergalactic [3] clouds, solar prominences [4], so
called “marfes” in tokamaks [5], and radiative Z pinches
[6]. A large number of works was devoted to various
aspects of the dynamics of the RCI, starting from the
comprehensive linear theory by Field [2]. The nonlinear
theory of the RCI has attracted much recent attention in
the context of self-organization and pattern formation in
optically thin radiating plasmas [7-14].

Most of the nonlinear studies of radiative bistability
and RCI were limited to the one-dimensional (planar)
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geometry, although two-dimensional dynamics was ad-
dressed numerically in the context of solar physics [15].
Essentially one-dimensional dynamics is often realized
in strongly magnetized, low-3 plasmas, where the mag-
netic field suppresses both transverse plasma motions and
transverse heat conduction. (Here 3 is the ratio of the
plasma pressure p to the magnetic pressure B%/8w.) A
possible example of such systems is provided by the coro-
nal plasma loops in the solar atmosphere [16]. In con-
trast, in the interstellar and intergalactic plasmas, the
magnetic fields are often insufficient to strongly magne-
tize the plasma [17], so that the dynamics of the RCI in
such plasmas is in general three dimensional.

In weak magnetic fields (or for a low degree of plasma
ionization), the values of the plasma heat conduction
along and across the field are comparable, so that, for
simplicity, the conduction can be assumed isotropic.
Also, in this case the Ampére force (1/47)curl B x B is
much smaller than that resulting from the pressure gra-
dient and therefore can be neglected. Disregarding other
forces, such as resulting from gravity, rotation, etc., we
arrive at the basic model problem of a three-dimensional
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nonlinear dynamics of an optically thin isotropic plasma,
which is subject to external heating and cools radiatively.
As we shall see, this model, though greatly simplified, is
quite nontrivial.

If the characteristic spatial dimensions of the plasma
region of interest are much less than the acoustic Field
length (the characteristic distance traveled by acoustic
waves on the radiation time scale), while the time scales
we are interested in are much longer than the acoustic
time, the pressure gradients become small. If, in addi-
tion, the plasma dimensions are much larger than the
conductive Field length (the characteristic thermal dif-
fusion distance on the radiation time scale), one can ne-
glect the heat conduction (at least, in the initial stage
of the dynamics). This regime was first considered by
Sasorov [8] in the three-dimensional geometry. Sasorov
employed the isobaricity condition p =const, which as-
sumes that the plasma region of interest is surrounded
by an external (inexhaustible) plasma “reservoir” pro-
viding a free mass exchange between the internal and
external plasma. Assuming a heating-cooling function
with only one, unstable equilibrium, Sasorov showed
that the formation of “thermal pancakes,” earlier pre-
dicted in the long-wavelength limit of the RCI [7], per-
sists in the intermediate-wavelength limit as well. The
isobaric regime of the intermediate-wavelength RCI was
also studied in a one-dimensional geometry [9-11], but
for a bistable heating-cooling function. In this case, the
plasma segregates into two locally stable phases. Then
heat conduction becomes important, and the final stage
of the dynamics is described in terms of “evaporation”
or “condensation” fronts [18,19,10], which normally lead
to “uniformization” of the plasma.

In the present work we shall also consider a bistable
plasma. However, as in our previous paper [12] (which
will be called AMS in the following), we shall be inter-
ested in a regime alternative to isobaricity and assume
that the plasma is confined by external forces, so that no
plasma can enter or leave the system. As an astrophysical
example of such a confinement, one can consider inter-
stellar gas in the gravitational field of a galactic disk.
Of course, a fully consistent treatment of such a prob-
lem would require an explicit account of gravitation in
the equation of motion. Instead, we effectively replace a
smooth potential well of the gravity field by a “box,” so
that the plasma inside the “box” does not feel the gravity
until it reaches the “walls.”

AMS treated the nonlinear dynamics of the RCI of a
confined, thermally bistable plasma in the planar geom-
etry. As the length of the system is much larger than
the conductive Field length, the width of the “evapora-
tion” or “condensation” fronts is very small compared to
the length of the system. It was shown by AMS that
nonlocality, resulting from the mass conservation and
the finite length of the system, makes possible forma-
tion of stable stationary coherent patterns in the form of
two phases, divided by narrow transition layers (fronts).
Correspondingly, during the conductive stage, the spa-
tially uniform, time-dependent plasma pressure P(t) ap-
proaches the “area rule” value P, (see below), so that the
“evaporation” or “condensation” front motions are ar-

rested. From the viewpoint of pattern formation theory,
the one-dimensional system considered by AMS exempli-
fies a bistable system, subject to a nonlocal constraint
(total mass conservation). Other examples of nonlocally
constrained systems can be found in entirely different
fields of physics and chemistry [20-23].

In the two- and three-dimensional cases, the conduc-
tive stage of the RCI becomes more complex, as two new
factors, front curvature and deformation instability of
the traveling fronts, can affect the dynamics. The front
curvature of large-scale patterns is small and therefore
might seem insignificant. However, we shall see that, as
the pressure approaches P, and the front motion slows
down, the curvature effects become dominant and deter-
mine both the possible final states of the system and the
dynamics of relaxation towards the final states. The ma-
jor aim of this paper is to investigate in some detail, ana-
lytically and numerically, the role of the curvature effects
in the dynamics of confined bistable plasmas. Deforma-
tion instability of “evaporation” fronts and its possible
consequences in the dynamics of the system are briefly
considered in Appendix A.

The present paper is organized in the following way. In
Sec. II we formulate the problem, introduce the neces-
sary notation, and deal with the intermediate- and short-
wavelength limits. An essential moment here is elimina-
tion of the acoustic mode from the reduced equations. In
Sec. III large-scale two-phase equilibria, specific for ther-
mally bistable plasmas, are considered. We start with a
model problem of the equilibrium of a large spherical
“drop” (or “bubble”) of one phase in the other phase
and arrive at a linear relationship between the curva-
ture of the drop surface and the corresponding correc-
tion to the area-rule value of the pressure. This relation
is then generalized to nonspherical drops and bubbles and
employed for delineating possible large-scale equilibrium
patterns in the system. The next step is a further reduc-
tion of the governing equations, in order to describe the
dynamics of a radiatively segregated plasma (Sec. IV).
The obtained “super-reduced” equations are employed in
Secs. V and VI. Section V concerns stability analysis of
the large-scale equilibria. A number of model problems is
solved analytically. Stability of parallel slabs and individ-
ual drops (bubbles) is studied, and the minimum possible
radius of a stable drop (bubble) is found. In Sec. VI the
dynamics of ensembles of drops (bubbles) interacting and
competing via evolving background is considered. This
competition looks like Ostwald ripening, and we address
the dynamical and statistical properties of this system.
In Sec. VII we perform two-dimensional numerical simu-
lations of the dynamics of a bistable plasma, confined in
a square “box.” Sec. VIII is devoted to a brief summary
and discussion of the results.

II. BASIC EQUATIONS AND THE ACOUSTIC
MODE ELIMINATION

We start with simple fluid equations, describing the
dynamics of an unmagnetized, optically thin ideal plasma
of mass density p, temperature T', and velocity v, which
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is heated externally and cools radiatively [2]:

dp

a +pV-v=0, (1)
dv

Pt Vp =0, (2)

1 dp Y
@ T oy. -Vv. =
—1dt + 7_1;0 v+ pL(p, T) -V -(KVT) =0,

(3)

R
p=—pT, 4
i (4)

where d/dt = 8/0t+v-V is the total time derivative, £ is
the heating-cooling function (the difference between the
rate of radiative cooling and the rate of heating per unit
mass), K = K(T) is the (isotropic) thermal conductivity,
v is the specific heat ratio, p is the effective molar mass of
the plasma, and R is the gas constant. All forces except
the pressure gradient are disregarded in the equation of
motion (2). As to the small viscosity, it can be neglected
for slow (subacoustic) motions that we shall be interested
in.

The linear stability of the simplest, uniform equilibria
of the system (1)—(4), i.e. p = po =const, T' = To=:const,
v = 0, and L(po,Tp) = 0, was studied by Field [2]. It
is the behavior of the heating-cooling function L(p,T)
in the vicinity of the equilibrium values po and Ty, the
perturbation wave number k = (k2 + k2 + k2)'/2, and
the value of thermal conductivity K which control ther-
mal stability and, in the case of instability, its type (iso-
choric, isobaric, or isentropic) and growth rate [2]. In the
intermediate- and short-wavelength limits, the results of
the linear theory of the RCI look as follows. If the uni-
form plasma equilibrium is isochorically stable,

(%)p >0 (5)

(and only this case will be considered in the following),
it is the isobaric instability criterion,

3E) <8£) p (BE)

=) == -=(= <0 (6)
<8T » or), T \0p)r

for p = po and T = T, which represents the necessary

condition for the RCI [2]. The instability is aperiodic,
and its growth rate is [2]

_O=Du[_ (0L pdLY _ 2
n = ’)’R 8T Toap ROk ’ (7)

evaluated at T = Ty and p = po. Here ko = K(T0)/po
is the unperturbed thermal diffusivity. As seen from
Eq. (7), thermal conduction always has a stabilizing ef-
fect, erasing perturbations with wavelengths shorter than
some threshold one (which typically is of the order of the
Field conductive length).

We shall consider a plasma confined in some domain
Q (two or three dimensional), the maximal dimension of

which is L. We assume that the normal components of
the plasma velocity and of the heat flux at the closed
boundary I' of the domain €2 are zero:

(v-ng)|r =0, (8)

(VT -ng)|r =0, (9)

where ng is the normal to the boundary Q. From Egs.
(1) and (8) immediately follows mass conservation:

/ p(r,t)dr = const. (10)
Q

If the dimensions of the system are much less than the
acoustic Field length, while the plasma motions are slow
in comparison with the speed of sound c¢,, we can sim-
plify the original set of Egs. (1)—(4), so that the reduced
system will not include the acoustic modes [24]. For this
purpose, let us represent the total plasma pressure p(r,t)
as a sum of its spatially averaged part

P(t) = ﬁ/np(r,t) dr (11)

and a spatially variable part p(r,t), so that
p(r,t) = P(t) + p(r, t), (12)

where || is the volume of the region Q in the three-
dimensional case or its area in the two-dimensional case.
As the ratio p/P ~ v%/c? is assumed to be small, we can
neglect p in Egs. (3) and (4). Therefore, the set of Egs.
(1)—(4) can be rewritten as

dp

E—t‘-l-pV'V:O, (13)
dv
-7 5 — 4
pg TVE=0, (14)

1 dP ¥
— = 4+ T pv. T)—V-(KVT) =
pom e ol v Vv +pL(p,T) ( ) =0,
(15)

P(t) = —EpT, (16)

with the boundary conditions (8) and (9). In view of Eq.
(16) we can also write

(Vp-ng)|r =0. (17)
Note that p appears only in Eq. (14), and it can be

eliminated completely if we apply curl to both sides of
this equation. The resulting relation

V x (p%) —0 (18)
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replaces Eq. (14). In this sense, Egs. (13)—(16) with
the boundary conditions (8) and (9) represent a closed
set. These equations serve as the general form of our re-
duced model, applicable to the intermediate- and short-
wavelength limits. It can be checked that linear stability
analysis of uniform equilibria in the framework of the re-
duced set of equations (13)—(16) immediately yields ex-
pression (7) for the growth rate.

Integrating Eq. (15) over the volume of the region Q
and using the boundary conditions, we obtain the follow-
ing important relation:

P(t) = —% /n pL(p, T)dr, (19)

which determines the temporal evolution of the average
plasma pressure. Equation (19) describes the global en-
ergy balance of the system and is similar to the “global
pressure equation” of Begelman and McKee [25]. Its one-
dimensional version was employed in AMS.

Now we shall follow AMS and assume that the tem-
perature dependence of the heat conductivity is pow-
erlike, K(T) = KoT“, so that the cases of electron-
dominated (o = 5/2) and neutral-dominated (a = 1/2)
thermal conductivity can be accounted for properly. In-
stead of the plasma density, we introduce the specific
volume u(r,t) = p~!(r,t) and eliminate the tempera-
ture, using the equation of state (16). Now the heating-
cooling function L(p,T) = L[u~?, (u/R)Pu] depends on
u and P. Introducing scaled variables @ = u/uo and
P = P/P,, we define the dimensionless heating-cooling
function A(@, P) :

y-1 -1 H o P
c( —P):E/\,P, 20
~pu u -, R u 0 (u ) ( )
where the parameters up and Py and the coefficient Lo
are chosen in such a way that the function A(4, P) eval-
uated, for example, at &« = 1 and P = 1 is equal to unity.
Following Begelman and McKee [25], we define the con-

ductive Field length §r. In our notation,
= (B)' O DKt

v£Lo

= (21)
Recall that intermediate wavelengths are much longer
than ép (however, much shorter than the acoustic Field
length, see above), while short wavelengths are compara-
ble to or smaller than .

Now we can introduce the remaining scaled variables:
r=r/dF, t = Lot, and ¥ = v/(6FLo), and rewrite Egs.
(13)—(15) in the following scaled form:

(2—1: =uV.v, (22)
d
—d—‘ti +uVp =0, (23)

P
’Y—P+VV+)\(U,P)—PQV(UQV'U,)=O (24)

with the boundary conditions (8) and
(Vu-nn)h'* =0. (25)

The global pressure equation (19) can be rewritten as
P 1 /
_— = — /\ u,P dl‘, 26
yP 12| Ja (v, P) (26)

and the carets are omitted.
III. LARGE-SCALE SEGREGATED EQUILIBRIA

Let us look for possible segregated, that is nonuniform
equilibria, v = 8/8t = 0, of Egs. (22)—(24), satisfying
the boundary condition (25). These are described by the
following equation:

V. (uaVu) = Pe;a/\(u, Peq)a (27)

where P, is the equilibrium pressure.

Notice that if they exist the equilibria described by
Eq. (27) coincide with those of the original (unreduced)
set of equations (1)—(4). Also, Eq. (27) will hold in the
isobaric regime, the difference being in the selection of the
parameter P.q: in the isobaric regime P.q is prescribed
by the boundary conditions. Equations similar to Eq.
(27) appear in many contexts. For example, the same
equation describes possible equilibria of a one-component
reaction-diffusion equation [26]:

O P =A@, P) + V- (uVu). (28)
Finally, in the two-dimensional case, Eq. (27) witha =0
describes a steady vortex flow of an ideal incompress-
ible fluid [27]. In this case u plays the role of a stream
function, so that the vorticity is equal to V2u. Obvi-
ously, stability of the solutions to Eq. (27) in all the
above-mentioned problems depends on the specific time-
dependent governing equations and looks differently in all
these problems.

Although the one-dimensional problem for Eq. (27)
is elementary, not much is known about two- and
three-dimensional analytic solutions, unless the function
A(u, P) is a linear function of u**!. A limited number of
particular exact solutions can be found in the literature
for specially selected nonlinear A(u, P). Instead, we shall
consider here more general, though approximate, large-
scale solutions, which describe segregation of a bistable
plasma into large regions occupied by the stable phases
1 (where u = u;) and 2 (where u = u3), with narrow
transition layers between them. Therefore we shall con-
centrate, as in the paper AMS, on the bistable heating-
cooling function A(u, P). For a fixed P, such a function
has an “unstable” root u,(P), surrounded by two “sta-
ble” roots, so that u;(P) < uyu(P) < uz(P). For large-
scale segregated equilibria, both the right and the left
hand side of Eq. (27) are close to zero everywhere except
in these transition layers. Therefore Eq. (27) is satisfied
“trivially” outside the transition layers, while the “non-
trivial” balance between the left and right hand sides of
Eq. (27) determines the structure of the transition layers.

The simplest large-scale segregated equilibria are those
with zero curvature, and they represent alternating par-
allel plasma slabs with u = u1(Peq) and u = uz(Peq)
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whose widths are much larger than unity. In this case
Eq. (27) becomes one dimensional, and we recover the
well known solution discussed by AMS. In this case, the
equilibrium pressure P4 is equal (with an exponentially
high accuracy) to a special value P,, corresponding to
the area rule.

The simplest solutions with a nonzero curvature repre-
sent a single cylindrical or spherical “drop” (phase 1) in
the “vapor” (phase 2), or, alternatively, “bubble” (phase
2) in the “liquid” (phase 1). In these cases, Eq. (27) can
be rewritten as

d [ odu\  d—1 ,du  __,
E"- (u E) +—r——u d’r‘ _Peq A(’U,,Peq), (29)

where d = 2 for a circle (in two dimensions) or cylin-
der (in three dimensions), and 3 for a sphere. (This and
most of the following relations containing d are formally
valid in the planar case d = 1 as well.) Equation (29)
with the boundary condition (25) represents a nonlin-
ear eigenvalue problem for the eigenfunction u(r) and
eigenvalue P.;. We consider in this paper only large-
scale drops and bubbles, the radius of which, R, is much
larger than unity. In this case, the eigenvalue problem
can be treated perturbatively. As the zero approxima-
tion, we shall consider the corresponding planar problem
in an infinite space (see, e.g., AMS). In this approxima-
tion P,y = P,, the area-rule value. Being interested in
finding a small (linear) correction to Peq, proportional to
1/R, we can make the following simplifications. First, we
can move the boundary condition at »r = 0 to —oo (which
gives only an erponentially small error in P.4). Second,
we can replace the factor 1/r by 1/R in the second term
of Eq. (29), because at |r — R| > 1 du/dr is exponen-
tially small, while at |r — R| ~ 1 the factor 1/r can be
written as

_ r— R
r R R2

+... ;

therefore it can be replaced by 1/R with an error O(R™2),
which we neglect in the linear approximation. [The pro-
cedure of replacement of 1/7 by 1/R in the second term of
Eq. (29) is well known in the theory of two-dimensional
reaction-diffusion equations; see, e.g., [28].] Therefore,
at R > 1, the second term in Eq. (29) is much smaller
than the first one. In the zero approximation, we ne-
glect the second term and return to the one-dimensional
equilibrium problem. This yields the area-rule [18,19]

uz (P)
/ u® A(u, P) du = 0, (30)
uy (P)

so that P,y = P,, the area-rule value. Correspondingly,
for the zero-order approximation of the function u we
have the following relation (see AMS):

1 duo 2 2 __ —a o o

In the first approximation, we can expand A(u, P) in the
vicinity of P = P,:

A(u, P) ~ A(u, P,) + p(u)(P — P,), (32)

where p(u) = 0A(u, P)/OP evaluated at P = P,, and
P - P, K P,.

Now we multiply Eq. (29) by u“du/dr and integrate
it over 7 from 0 to the boundary I" of the plasma region.
Then we make use of the fact that du/dr vanishes out-
side the transition layer, replace (under the integral) the
function u and its derivative du/dr by their zero-order
approximations in the first-order terms, and employ Eqgs.
(30) and (31). We arrive at the following relation:

Py =P, + gzc, (33)
where
ws o f v 1/2
Jui v (ful 7 A(n, P*)dn) du
f = P*o‘ - ” 1/2 s (34)
J2x (J n=x, Pydn)  du
P2 (%2 4o () du
4= Ju (35)

12 (22 e am Py dn) " du

Therefore we have obtained a linear relationship between
the small correction P.q— P, to the area-rule value P, and
the small (dimensionless) curvature K of an equilibrium
drop. The curvature X = +(d — 1)/R is defined here to
be positive for a drop and negative for a bubble. The g
factor (35) appeared in the one-dimensional theory (see
AMS), while the f factor is new. Notice that f is always
positive, which is important for the following analysis.
For the simplest case of @ = 0 (temperature-independent
conductivity), f = 1.

Equation (33) has been derived for “perfectly” cylin-
drical or spherical drops and bubbles. However, its va-
lidity can be extended. First, if we neglect the transition
layer width, we can use the term “surface” for our drops
and bubbles. Let us consider a large and, in general, non-
spherical drop (bubble), the surface of which is smooth.
It is important that the nonsphericity does not have to be
small, so that any large-scale object with a smooth surface
can be considered. By smoothness we mean the curva-
ture to be much smaller than the inverse conductive Field
length (that is, than unity in the scaled equations), while
the typical length of the curvature variations along the
surface is much larger than the conductive Field length
(again unity). We prove in Appendix B that, starting
from Eq. (27) and introducing local orthogonal coordi-
nates on the surface of the nonspherical drop or bubble,
we arrive again at Eq. (33), but now

K=V n|—o, (36)

where n is a smooth unit vector field, which is normal
to the surface of the drop (bubble), and directed from
the phase 1 to the phase 2, while the point s = 0 is the
base of the vector n on the surface of the drop. This
result is obtained in the limit of a large drop (bubble)
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radius R (see Appendix B for a more precise condition),
and it is valid with an accuracy of R~2. Equation (36)
implies that the quantity K represents the sum of the two
principal curvatures of the interface [29]:

K =1/Ry +1/Ra. (37)

In its new meaning, Eq. (33) has far reaching conse-
quences. Since the equilibrium pressure must be uniform,
any equilibrium object must satisfy (with an accuracy of
R~2) the condition of a constant sum of the principal
curvatures of its surface [30]. Therefore a drop or bub-
ble of an arbitrary form is generally not in equilibrium.
Furthermore, if there is an ensemble of large drops (or
bubbles), whose distances from each other and from the
boundary Q are much larger than unity, then an equi-
librium can be achieved only if the radii of all the drops
(bubbles) are equal.

Most natural are “detached” equilibria, not connected
to the boundary T". It is a well known fact of differential
geometry that the only detached objects with a constant
sum of the principal curvatures of their surfaces are per-
fect spheres. (This is the reason why a weightless soap
bubble, not connected to any boundary, always acquires a
perfectly spherical shape.) Therefore, in view of Eq. (33),
we see that the equilibrium drops or bubbles must either
be perfectly spherical or perfectly cylindrical, and they
must have the same radius. (Formally, cylindrical drops
and bubbles belong to the “attached” equilibria.) In two
dimensions, we have only perfectly circular “drops” and
“bubbles” as equilibrium objects.

It is interesting to consider also some “attached” equi-
libria. The simplest of them are the above-mentioned
alternating parallel strips (in two dimensions) and slabs
(in three dimensions) of segregated plasma. As we shall
see, these can arise naturally in rectangular “boxes,” like
one that we shall use in our numerical simulations (Sec.
VII). Also, spherical drops (bubbles) of the same radius,
coexisting with cylindrical drops (bubbles) of half of this
radius can be in equilibrium.

In general, quite complex attached equilibrium pat-
terns, satisfying both the equation

1/Ry +1/R; = K = const (38)

with variable R; and R, and the prescribed boundary
conditions, are possible. Although interesting and math-
ematically nontrivial, such patterns are nongeneric. In
particular, their existence can be quite sensitive to the
specific form of the boundary I" [31].

In summary, we have identified possible large-scale
equilibrium patterns. We shall see, however, that sta-
bility arguments introduce important additional limita-
tions.

IV. CONDUCTIVE RELAXATION:
“SUPER-REDUCED” EQUATIONS
AND THEIR LINEARIZATION

In the relatively fast, radiative stage of the RCI, the
confined bistable plasma segregates into two locally sta-

ble phases. The following slower dynamics is determined
by thermal conduction, and we call this stage conduc-
tive relaxation. Our immediate aim is to obtain “super-
reduced” equations, which will enable us, in particular,
to follow the relaxation of the system to any of the equi-
libria found in the previous section.

At the end of the radiative stage, the plasma density
and temperature of each of the two phases become close
to uniform outside the narrow transition layers, so that
we describe these phases by the uniform values of their
specific volume u;(P) and uz(P) (therefore neglecting
p compared to P everywhere except in Vp). Following
P(t), u; and up can vary in time. Therefore, for the
phase 7 (¢ = 1,2), the continuity equation (22) can be
rewritten as

_ Olny(P) ;
V-.v; = 5P P, (39)
while Eq. (23) takes the following form:
dVi ~
+ ui(P)Vp,- =0. (40)
dt
Taking the curl of Eq. (40), we obtain
7]
aVXViZVX[V,’X(VXVi)]. (41)

Equations (39)-(41) should be supplemented by
matching conditions at each interface dividing the re-
gions occupied by the phases 1 and 2. In doing so, we
treat the narrow transition layers as discontinuities. This
implies, in particular, that the velocity field is assumed
to be large scale, so that it has no components with wave-
lengths comparable to the conductive Field length.

As usual, the continuity and momentum equations re-
sult in the following matching conditions (see, e.g., [32]):

Vi n = Cp + Jnli (i=1,2), (42)
Uln_cnvlt:v2n_cﬂ,v2t, (43)
uy Uz

2 2
n — tn ~ VUin —Cn ~
o (2222) s (222) s g
1

uy

Here w, = w - n is the normal component of any vector
w at each interface, and wy = w — (w - n)n. The normal
vector n was defined in Sec. 3, ¢, is the normal compo-
nent of the front velocity, and j, = (vin — ¢n)/u; is the
flux of material through the interface.

In its turn, the thermal balance equation provides an
expression for j,. To get it, one should transfer to the
reference frame, which moves with the velocity c¢,, use
the smallness of the transition layer width, and match the
“inner” and “outer” solutions, as in the one-dimensional
theory of AMS. Obviously, j, depends on the pressure P
and front curvature K. For small K, this dependence can
be written in the following form:

Jn = "G(P) +F(P)’C’ (45)



954 IGOR ARANSON, BARUCH MEERSON, AND PAVEL V. SASOROV 52

where G(P) and F(P) are unknown functions. It is dif-
ficult to calculate these functions in the general case, as
it requires solving a nonlinear eigenvalue problem for an
ordinary differential equation of the second order (which
follows from the thermal balance equation in the refer-
ence frame, moving with the interface). However, they
can be easily found in the limit of |P — P,| < P,, when
the pressure P is already close to its area-rule value. Ex-
panding G(P) and F(P) in a Taylor series near P = P,
we have

G(P)=G(P.) +G'(P)(P~P) + -, (46)
F(P)=F(P)+---, (47)

and the terms denoted by --- can be neglected as soon
as |P — P,| < P,. Owing to the definition of P, we have
G(P,) =0, so that

jn = —G'(P,)(P — P,) + F(P,)K. (48)

Comparing Eq. (48) with Eq. (33) and with Eq. (32) of
AMS, we see that G'(P,) = g and F(P,) = f. Finally,

Jn=—9g(P—-P,)+ fK for |P—-P,|<P. (49)

It is seen that both the one-dimensional result of AMS,
Jn = —g(P - P,,), (50)

and the equilibrium relation (33) are recovered from Eq.
(49) as limiting cases.

Equations (8) and (25) remain the boundary condi-
tions for the system. In the segregated plasma that we
are considering now, Eq. (25) is satisfied automatically
at the parts of the boundary I" embracing regions occu-
pied by either of the “pure” phases 1 and 2. Also, if
an interface meets the boundary I', the boundary con-
ditions require each interface to be perpendicular to the
boundary at their “meeting point.”

Equations (39) and (40), combined with the matching
conditions (42) — (44) and (49) at the interfaces and the
boundary conditions, represent a closed set and describe
the dynamics of confined thermally bistable plasmas at
the conducting stage, when |P — P,| <« P,. However, it
is very helpful to find the corresponding “super-reduced”
forms for the global pressure equation (26) and mass con-
servation law (10) in the limit of small (P — P,)/P, and
K. Integrating each of the two Egs. (39) over all do-
mains occupied by the phases 1 and 2, respectively, and
using the Gauss theorem, Eqs. (42), and the boundary
condition (8), we get

dlnu,(P) dlnux(P)Y .
(191 255 ) + oy T (B

/ /s; (v1 n —v2 n)dS

Il

(42 (P.) — uz(P.)] / L Jn dS, (51)

where a surface integral over all interfaces €; appears.
Then, using Eq. (49), we arrive after some algebra at

the following equation:

_P-P.-(K)f/g
(T)

g(uz — uy)?(u)
" ((uz ()52 + (W) —m)%%)p:p. -

This reduced form of the global pressure balance equation
(26) generalizes the corresponding one-dimensional result
[Eq. (37) of AMS]. The following notation has been used

in Eq. (52):
S = //s;, ds (53)

is the total area of the interfaces,

(= (54)

P

is the characteristic size of segregated objects, and

(/C):%//mms (55)

is the sum of the two principal curvatures, averaged over
the interfaces. Finally,

o fe] B dr \ 7!
= (@) + [l fua(P) ~ (/n e 0)>
(56)

is the average specific volume. This quantity is defined by
the first equality of Eq. (56). The second equality shows
that (u) is independent of time, which implies that mass
conservation holds in the reduced equations. This fact
can be checked directly, if we differentiate the expression
[Q1]/u1(P) + |Q2]/uz(P) with respect to time, using the
relations

d d

Eqgs. (39), and the Gauss theorem.

Returning to the global pressure equation (52), we im-
mediately see an important difference between the one-
dimensional case (KX = 0) and the higher-dimensional
cases. The expression in the large parentheses of Eq.
(52) is negative (see AMS). Therefore, on the time scale
71 ~ (L), the pressure mismatch P — P, approaches
f(K)/g (which was zero in the one-dimensional theory).
At the next (slower) stage, P — P, is approximately equal
to f(K)/g. As the average curvature (K) is (slowly) time
dependent, P — P, follows f(K)/g “adiabatically.” The
time dependent quantity (XC), which does not appear in
the one-dimensional problem, introduces a new “degree
of freedom,” and, therefore, a new time scale 73; see later.
We shall see in the next two sections that this can result
in qualitatively new effects, such as instability with re-
spect to small changes in the sizes of “drops” and “bub-
bles,” Ostwald ripening, etc.
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Now we present the linearized version of the super-
reduced equations, which will be employed in the next
section for the analysis of the linear stability of the equi-
libria found in Sec. III. The linearization is performed
near a static equilibrium, so that the unperturbed veloc-
ity is put to zero. The linearized continuity equation still
looks like Eq. (39), except that the P derivative in the
right hand side should be evaluated now at P = P,. The
linearized Euler equation (40) takes the form

8Vi ~
5 T u;(Py)Vp; =0, (58)
while Eq. (41) yields
2(V xv;)=0 (59)
ot Yo

This means that, if the flow outside the transition layers
is potential at ¢ = 0, it remains potential for all times.
Furthermore, if the initial velocity is zero, we can intro-
duce, instead of the pressure variation p;, the following
effective potential

t
wilet) == [ e, (60)
0
and replace Eq. (58) by the following relation:
Vi = ui(P*)V’l/),;. (61)

Linearization of the matching conditions (42)—(44) give
the following results. In Eq. (42) we evaluate u; at P =
P,:

Vin = Cp + Jnui(Py) . (62)

In the linear approximation, Eq. (43) is satisfied identi-
cally. In Eq. (44) the terms proportional to the square of
the velocities can be neglected, so that it can be finally
written as a continuity condition:

Y1 = o (63)

V. PERFECT PATTERNS AND
BACKGROUND-MEDIATED INSTABILITY

In this section we shall study analytically a number
of two- and three-dimensional stability problems for the
equilibria found in Sec. III. These problems are de-
scribed by the linearized super-reduced equations derived
in Sec. IV. We shall start in Sec. V A with stability of
a planar equilibrium interface with respect to small vol-
umetric (k = 0) and deformation (k # 0) perturbations.
Stability of a perfect drop (bubble) with respect to de-
formation of its shape is analyzed in Sec. V B. Radial
stability of the same drop (bubble) is considered in Sec.
VC.

A. Linear stability of a planar interface

Let the two-dimensional confinement domain 2 rep-
resent a rectangle with the dimensions L, and L,, and

955
L
Y 2
3

A =~
1 ‘\\~

1
0I

L

FIG. 1. Geometry of the problem of linear stability of a
slab-type equilibrium. Shown are the unperturbed (solid line)
and perturbed (dashed line) interfaces between the phases 1
and 2.

let the unperturbed interface between phases 1 and 2 be
parallel to the z axis and positioned at y = A; (see Fig.
1). As usual, indices 1 and 2 correspond to the phases
1 and 2, respectively. Now, let é(z,t) be a small per-
turbation of the interface position. We expand it in the
Fourier series §(z,t) = ), 6x(t) cos kxz. As close to equi-
librium the interface is normal to the boundary at the
intersection points, the wave numbers k& must be equal to
wn/L,, where n = 0,1,2,... . The perturbation includes
both the interface deformations, n > 0, and the “volu-
metric” mode n = 0. In general, the perturbed interface
is not in equilibrium, therefore the system will start to
evolve. Will the interface return to its equilibrium form
(possibly after a small displacement), and, if yes, how
much time will it take? The answer to this question is
determined by the behavior of the functions 6x(t), and
we should find them. We start with the linearized Egs.
(39) for the velocity fields in the regions of the perturbed
phases 1 and 2. Using the relation (61), we rewrite Eqgs.
(39) as two Poisson equations for v, :

V21,2 = C12(t), (64)

where

1 Olnu .
Ci2(t) = L

ul,Z(P*) aP* P, (65)

and Ouy,2/9P, stands for Quy /9P evaluated at P = P,.
The solutions to Eq. (64) can be sought in each of the
two domains 1 and 2 as the sum of its particular solution
and a harmonic function, both of them satisfying the
condition (8) on the boundary I'~With-Eq. (61) for the
velocity, the boundary condition (8) is reduced to the
requirements that the = derivatives of the-potentials 9 2
vanish at £ = 0 and * = L., while their y derivatives
vanish at y = 0 and y = L. The following expressions
meet these criteria:

cosh ky 1
:2:,4 —_ ~C1(t)y? 66
W1 = kcoshkAl coskx + Ao + 201( s (66)
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_ cosh[k(L, — y)]
b2 = kz;éo Br cosh kA, cos kz

+Bo+ S Cr(1)(Ly — ), (67)

where A and By are functions of time only, and A, =
L, — A;. The constant factors coshkA, ; are introduced
in Egs. (66) and (67) for convenience.

Now we have to match the solutions at the interface.
In the linear approximation, it is sufficient to treat the
interface as unperturbed. First, we use Eq. (63), which
yields Ay = By, for k£ # 0, and

1 1
By = Ag + ECI(t)Af — ECz(t)Ag

Second, we use relations (62). We calculate the normal
velocity components vy, and vy, at the interface from
Egs. (61), (66), and (67), and express the interface cur-
vature in the linear approximation as

K~ Z k265 (t) cos kzx.
k#0

Now we calculate c,:

_ ds(z,1)

Cn pra So(t) + Z x(t) cos k.

k#0

Then relations (62) yield the following equations:

uy Z Agktanh(kAq) coskz + u1C1(t) Ay
k0

= 8o(t) + Z bk (t) coskz — gu, (P — P,)
k0

+ur f Z k254 (t) cos kzx, (68)
k#0

—uy Z Arktanh(kAg) coskr — uaCa(t) Az
k#0

= 5O(t) + Z ék(t) coskx — gua(P — P.)
k#0

+uaf Z k26 (t) cos k. (69)
k#0

It is seen from Egs. (68) and (69) that the volumetric
mode k& = 0 is decoupled from the deformation mode
k # 0, and each mode can be considered separately. For
the volumetric mode, Egs. (68) and (69) reduce to

A131H“1P—$0(t)+gu1(P—P,,) =0, (70)
oP,
Olnwu,y .

Eliminating So(t), we obtain an equation for P which

represents a one-dimensional form of Eq. (52) [and co-
incides with Eq. (37) of the paper AMS]. This is not
surprising, as both the equilibrium interface and its vol-
umetric perturbation are describable in this case by the
one-dimensional theory. Equations (70) and (71) can be
easily solved, and the results are the following:

AP = APy exp (——t-) , (72)

T1

a1 al
By % + Ay 243

do(t) = Ao+ AP,
Uz — U

x [exp (‘%) - 1] , (73)

where AP = P — P,, AP, and Ag are the initial values
of AP and 4, respectively, and

dlnu,y 8lnwu,
_AiTgpt + A2%p,

g(uz *ul)

T1 = (74)
is the characteristic pressure relaxation time, predicted
by the planar theory of AMS. Recall that 71 > 0.
Roughly speaking, 7; is of the order of the typical size of
a pattern (in our scaled units), that is, much larger than
unity (see AMS).

Therefore, for the volumetric perturbations, the small
pressure perturbation goes to zero with time, P ap-
proaching P,. Meanwhile, the interface relaxes, in gen-
eral, to a new equilibrium position, which is close to the
original one. It is clear that the volumetric mode must
be neutrally stable if the initial pressure perturbation
APy =0, and we see from Eq. (73) that it is indeed the
case.

Now let us consider the deformation modes. For such
modes, the pressure perturbation vanishes, and we obtain
from Egs. (68) and (69) the following relations:

uy Ak tanh(kA;) — 85 (t) — uq FE28k(t) = 0, (75)

ug Ak tanh(kAz) + 8k (t) + ua fE28,(t) = 0. (76)
Looking for éx(t) in the form of
0r(t) = 6x(0) exp(qt),

we arrive at two homogeneous linear algebraic equations,
whose solvability condition yields

tanh(kAl) -+ tanh(kAz)

= —k? .
7 T anh(kAy) + up tanh(kAg)

(77)

Recall that £ = mn/Ly,n =1,2,....

Since the f factor is always positive, we have ¢ < 0,
that is, the interface is stable with respect to small defor-
mations. The characteristic relaxation time 75 ~ ¢! is
defined by the lowest-order mode n = 1. Roughly speak-
ing, 72 is of the order of the squared size of the pattern,
therefore 75 > 7.



52 FRONT-CURVATURE EFFECTS IN THE DYNAMICS OF . . . 957

It is instructive to look into two limiting cases of Eq.
(77). In the case of kA,,kA; — oo, we expect that the
boundaries of the system do not play any role. Indeed,
the damping rate g reduces to a “local” form

UiU2

q=—2k*f (78)

up + ug’
and the specific volumes of the two phases enter the
damping rate in a symmetric way.

In the case of kA; — 0 almost the entire domain Q is
occupied by the phase 2. Therefore one might expect that
the damping rate will be determined by the parameters of
the phase 2. In fact, the opposite is true, as the damping
rate becomes

q = "szul,

and it is u; that determines the damping rate. Similarly,
up determines the damping rate in the case of kA, — 0,
when the phase 1 dominates.

Let us summarize the main results of this subsection.
An arbitrary small perturbation of the equilibrium inter-
face in the slab geometry can be represented as a volu-
metric perturbation (k = 0), accompanied by a pressure
variation, and a set of isobaric deformation perturbations
with different k& # 0. All these perturbations are damped
independently. The volumetric perturbation relaxes on
the time scale 71 ~ L > 1, while the deformation pertur-
bations (more precisely, their lowest modes) decay much
more slowly, on the time scale 7, ~ L2 > 1;. Although
we have solved the stability problem for two dimensions,
the results are valid for three dimensions as well, because
of the symmetry of the unperturbed state.

B. Shape stability of a perfect drop (bubble)

Now let us consider the stability of a single two-
dimensional (circular) drop of radius R (region 1), which
is in equilibrium with an ambient “vapor” (region 2).
Now the equilibrium pressure P, differs from the area-
rule value P, by the correction f/(gR), as predicted by
Eq. (33). The results will be immediately extended to
the case of a bubble (region 2), surrounded by “liquid”
(region 1). The simplest problem is formulated for a cir-
cular domain Q with a radius L > R, concentric with the
drop. Similar to the previous problem, small volumetric
(purely radial) perturbations of the drop, which are gen-
erally accompanied by a pressure perturbation, decouple
from (isobaric) azimuthal perturbations of the drop in-
terface. Therefore we shall consider the radial stability
separately in the next subsection. Here we shall assume
that the pressure perturbations are absent and specify
a small interface perturbation in the form of the radius
variation Ré(¢,t) = Ré,(t) sinmg, where ¢ is the polar
angle and m = 1,2,.... For the isobaric perturbations,
Egs. (39) and (61) yield the Laplace equation for the
“potential” 1 in the regions 1 and 2. In the region 1, the
solution can be written as

P = Ar™" sinma, (79)

while in the region 2
B
Yy = (A-_,rm + r_"f) sinmg, (80)

where A1, A; and B, are constants. The further proce-
dure is almost identical to that of the previous subsection,;
therefore we can be quite brief. We have to zero 9, /0r
at the boundary r = L, require ¥; = 1, at the (un-
perturbed) interface » = R, and use relations (62). For
the latter operation we need an expression for the cur- -
vature perturbation, as the leading curvature term, pro-
portional to 1/R, cancels out with the term proportional
to P.g — P,. In the linear approximation, the curvature
perturbation is

_%(fggﬂ+a¢n)=%wf—U“@W

and relations (62) reduce to two algebraic equations for

A; and 6,,(t):

Rqd.,,(t) + f—;l(mz —1)ém(t) — uymA;R™ ! =0, (81)

Rgbn(t) + T2 (m? — 1)3,0(0)

—uzmAlRm*% =0, (82)

where ¢ = R/L and where we have put &, (t) = § exp(gt).
From the solvability condition we find

2f(m2 - 1)U1U2
R? [u; + up — (%)zm(uz — uy)]

q=—

(m=1,2,...). (83)

We see that the m = 1 mode is neutrally stable, as can be
expected (it corresponds to a displacement of the drop as
a whole). The azimuthal modes with m > 1 are always
damped, so that the interface finally recovers its circular
form. The characteristic relaxation time 7, is propor-
tional to the squared radius of the drop, and therefore
T2 > 71, as in the previous case of a planar interface. In
the limit of a small drop, R/L — 0, we have

_2f(m® - Nuuy

= Rz(ul +U2) ’

(84)

and this result must be independent of the form of the
boundary. Alternatively, when R/L — 1 (phase 1 domi-
nates), the damping rate

2 _
q= _f(m - 1)us

is determined by the phase 2 only.
The three-dimensional problem can be solved in a sim-
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ilar way. We put a spherical drop in the center of a spher-
ical cavity and prescribe a small perturbation of the drop
shape, proportional to the spherical harmonic Y}, (0, ¢).
We find that the perturbation is always damped, and the
damping rate is the following:

2f(12 = 1) (I + Dusuy
R2[luy + (I + 1ug + (I + 1) (ur — uz)(R/L)%+1]

q=-

(1=1,2,...). (85)

The results of this subsection can easily be reformu-
lated for the problem of stability of an equilibrium bubble
(phase 2) in the liquid (phase 1). The two- and three-
dimensional damping rates in this case can be obtained
by permutation of indices 1 and 2 in Egs. (83) and (85).

Therefore individual drops and bubbles are stable with
respect to deformation of their shapes, and the charac-
teristic time for the restoration of their perfect form is
T2 ~ Rz.

C. Radial stability of a single drop (bubble)

Now we shall study the behavior of purely radial per-
turbations of a single drop which are accompanied by
pressure variations. The linear theory of radial stability
can be developed in a standard manner, if we employ
Eq. (61), the linearized version of Eq. (39) for the re-
gions 1 and 2, and matching conditions (62) and (63).
More instructive, however, is a direct approach that we
shall employ now. We shall use the (nonlinearized) super-
reduced equations in the limit of P — P, <« P,, so that
it will be possible to go beyond the linear theory and
consider large variations of the drop radius.

We begin with a two-dimensional problem. Consider
a circular domain 2, containing a circular “drop” of ra-
J

wa [o(P — P — 4] [ % + (e = 1) & %]

Ui

dius R, concentric with Q, and surrounded by “vapor”
(phase 2). Let |2] = Sy be the area of the domain 2.
As usual, we assume that the plasma pressure P is close
to the area-rule value P,: P — P, < P,. Let the drop
radius and initial pressure be not in equilibrium, so that
the system starts to evolve, P and R changing in time.
Physically, mass and heat exchange between the drop
and the vapor starts. Since the radial mode decouples
from the (damped) azimuthal perturbations considered
in the previous subsection, P(t) and R(t) represent the
only variables of the problem, and we need two ordinary
differential equations to describe the dynamics. An equa-
tion for P is provided by Eq. (52), where we just need
to calculate (K), (L) and (u), using the two-dimensional
versions of Egs. (53)—(56). The result is the following:

, 2[o(P =P — f][ua(P) —wa(P.)]
P= . (86)
R [Blnu] + (“—RZ _ 1) 8!1111.2}

8P,

Now let us make use of the mass conservation in the
system,

7 (87)

2 . p2
d (ﬂ'R N So— TR ) —o.
U2

After differentiation and linearization around P,, we have

_ 27 RR
uz(Py)

2rRR
Uy (P*)

B wR? Olnu; -
ul(P*) BP*

_So— 7mR? 8lnwu,
’LLz(P*) 8P*

P =0. (88)

Substituting for P its value from Eq. (86) we obtain after
some algebra the second evolution equation:

uz

where uy,3 = uy2(Pu).
integrated analytically in the general case. However, we
shall limit ourselves to the important case of a relatively
small drop: wR? <« Sp. One can expect that the results

Equations (86) and (89) can be

89)
81 dlnus ) (
Oop + (g — 1) %2

[

The first integral of this system is

— R2
p_ M — const, (92)
S()ul -a—P%

obtained in this case will be valid for an arbitrary form
of the boundary I' (unless the drop is located too close to
the boundary), as the boundary-induced deformations of
the drop shape are small here. Using the small parame-
ter 7TR2/S(] and assuming that neither u; , nor their P
derivatives introduce large or small parameters, we ob-
tain a less cumbersome set of equations:

p e R lgp-py - L] o0
R=1u [g(P——P*) - -1’%] (91)

so that the integral curves on the phase plane (R, P)
represent descending quadratic parabolas (recall that
Ouy2/0P < 0). Because of the smallness of mR?/Sq,
the parabolas descend slowly.

In the limit of So — oo the parabolas reduce to straight
lines parallel to the R axis (the pressure becomes con-
stant). In this case there is a constant “critical” drop
radius,

f

R, = B D\’
9(P - P.)

so that the drop with R = R, is in equilibrium, as pre-
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R

FIG. 2. The phase plane of Egs. (90) and (91), describing
the dynamics of radial perturbations of a single drop. Solid
lines are the integral curves (92), dashed line is the line of equi-
libria. The numerical values correspond to a specific choice of
the heating-cooling function and parameters of the problem.

dicted in Sec. III. This equilibrium is, however, unstable:
a drop with R > R, grows with time, approaching the
linear law R ~ t, while a drop with R < R, shrinks and
disappears in a finite time. At this stage we notice a clear
analogy between this problem and various problems of
growth of droplets in first-order phase transitions, where
capillarity introduces mathematically similar curvature-
dependent effects.

Let us return to the case of a large but finite Sp. The
system (90) and (91) [as well as its more general version
(86) and (89)] possesses a “fixed line,” or line of equilibria

op-pP)-L =0,
which gives a family of equilibrium pressure values
P.y(R) [or a family of the critical radii R.(P)]. We see
that, for any initial condition R(0), P(0), the dynamics is
determined by the relative position of the corresponding
integral curve and the line of equilibria.

Figure 2 shows the structure of the phase plane. The
solid lines are the integral curves (92), while the dashed
line is the line of equilibria. For initial conditions lying
on those integral curves, which do not intersect the line
of equilibria, the drop will never reach an equilibrium.
One can see that it will shrink and disappear in a finite
time. (Actually, the theory breaks down for small drop
radii. However, our numerical simulations, free from this
limitation, will show that the drop evaporation indeed
persists until the drop disappears.)

Now consider integral curves, which have two inter-
section points with the line of equilibria. These points
represent two equilibria, the first with a smaller and the
second with a larger drop radius. It is easy to see that
the smaller-radius equilibrium is always unstable, so that

the drop either shrinks and disappears, or expands until
a new equilibrium with a larger drop radius is reached.
Therefore, the line of equilibria consists of two parts,
unstable and stable. The stability border, dividing the
line of equilibria into these two parts, is the tangency
point between the line of equilibria and an integral curve.
This point can be easily found, and it gives the minimum
value R, of the stable drop radius:
1/3
:| . (93)

We see that, while the minimum area of a stable drop,

mR2, increases with Sy as Sg/s’ its relative value mR2/S,
1/3

R — |- fuiSo5%2
27rgu2(u2 bt ul)

decreases as S

Equation (93) can also be obtained from linear stability
analysis. Indeed, linearizing Eqs. (90) and (91) around a
point (Ro, Po), lying on the line of equilibria P.4(R), one
can easily obtain the following growth or damping rate
for small perturbations 6 R and § P:

_ 2wguz(uz — u1)Ro &
DI

(94)

The marginal stability condition ¢ = 0 immediately gives
Eq. (93). Equation (94) is quite instructive, as it predicts
the characteristic time scales for the growth or damping
of the small perturbations. Close to the marginal sta-
bility, the characteristic time goes to infinity. On the
stable part of the line of equilibria, far from the marginal
stability, the characteristic time of relaxation to equilib-
rium is quite large, as it is proportional to a large factor
So/Ro. In contrast, the characteristic time scale of the
initial (linear) growth of an unstable drop (also far from
the marginal stability) is proportional to R% and inde-
pendent of the area Sy.

The three-dimensional problem of the radial stability
of a single drop can be analyzed similarly. As we shall
need these results in the following section, we present
them in some detail. Let us consider an arbitrary three-
dimensional domain with the volume Vj, containing a
spherical drop of radius R surrounded by “vapor” (phase
2). The drop volume (47/3)R3 is much less than Vj.
In this case, the coupled equations for P and R are the
following:

_ 4mug(uz —u)R

) 2f
P P—-P)- =}, 95
] (A SR M)
R=wu [g(P - P,) - %] . (96)
The first integral,
_ 3
P - Amua(up — u1) R = const, (97)

o
3Vour 5

describes a family of slowly descending cubic parabolas.
The phase portrait is similar to that shown in Fig. 2,
and the dynamics is the same as in two dimensions. In
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particular, the line of equilibria

g(P—-P*)—-Z—}—E')i 0

consists of two parts, unstable and stable. The stability

border is
1/4
Vo, Suz
R, = __ fuVoE , (98)
27rguz(u2 - u1)
so that the minimum volume of a stable drop grows with

Vo as V,, 3/4 , while the relative volume decreases as Vi, 1/4

Flnally, radlal stability of a bubble (phase 2) in the
“liquid” (phase 1) can be considered in the same way.
The results can be obtained from those for the drop
by permutating indices and changing the sign inside the
square brackets. For example, the minimum radius of a
stable bubble in three dimensions is the following:

1/4
R, = [— ] . (99)

Therefore we have found that an individual equilibrium
drop (bubble) can be either stable or unstable, and found
the instability criterion. An unstable drop (bubble) ei-
ther shrinks and disappears in a finite time, or expands
until a stable equilibrium is reached [33]. More generally,
the phase portrait analysis enabled us to follow the dy-
namics of an arbitrary nonequilibrium drop (under the
condition P — P, < 1) and reach the same conclusions.

fuzVo2a
2wguy (ug — u1)

VI. INTERACTION BETWEEN DROPS
(BUBBLES): OSTWALD RIPENING

Let us consider interaction between N > 2 drops or
bubbles. As usual, we assume that AP <« P,. Also,
we assume that the drop radii are large enough, R; >
1, i=1,2,...,N, so that our weak curvature theory is
valid, and that the distances between the drops and the
boundary and between the drops themselves are much
larger than the drop radii. The latter condition implies
that the total area occupied by the drops is relatively
small: So > m 3.~ . R2. In this small volume fraction
limit, the drop-drop interaction results solely from the
(uniform) pressure variations in time. Indeed, any devia-
tion from the equilibrium pressure P.q(R;) leads to heat
and mass exchange between the drops and the “vapor,”
which results in a nonlocal heat and mass exchange be-
tween the drops. The pressure “mismatch” P — P, can
be viewed as the “mean field” of the model. In particu-
lar, this interaction will mainly cause radial variations of
the drops, while their shape deformations will be small.
As we have already seen in Sec. III, the interaction van-
ishes in equilibrium, when all the drops have the same
radius. However, this equilibrium will be found to be un-
stable with respect to small variations of the drop radii.
Therefore our aim will be to describe the dynamics of
this system and its relaxation to the final state. In Sec.
VI A we deal with the dynamic behavior of V drops. In

Sec. VIB we employ and partially revise the theory of
Lifshitz and Slezov [34] and Wagner [35] to find a family
of “universal” distribution functions of large ensembles
of drops with respect to their radii.

A. Many drops’ dynamics: Ostwald ripening

Let us start with the two-dimensional case. According
to Eq. (49), the radial mass outflow from each drop is

f

i=1,2,...,N (100)
(negative outflow means inflow). Multiplying j; by the
drop circumference 2w R;, we obtain the mass loss rate of

each drop:

2
Mi = —27TjiRi = —d‘ (ﬂ%i) .
Uy

5 (101)

On the other hand, the total mass in the system is pre-
served:

(102)

After taking the time derivatives in Egs. (101) and (102),
we solve the resulting equations for P and R;. In the limit
of So > = N | R?, we arrive at

27\'U2( 2 — ul)

P:
Bug
So5p 03P

N
[g(P —P.)Y Ri- fN} , (103)

R, =u, [g(P -P,) - {ii] , i=1,2,..,N, (104)

where uy 2 = uy,2(Pyx). These equations directly general-
ize Egs. (90) and (91), obtained for N = 1. Equations
(103) and (104) possess the first integral

p_ Tuzlua —w) Z R? = const; (105)

50“1 —2

however, it is not enough to solve the (/N +1)-dimensional
problem.

In three dimensions, the corresponding equations are
the following:

V- duy

4dmug(ug — u1) Y Y
. _%W_l[g(P—P*)ZRf—%ZRi
=1 =1

(106)

2f

R =wu; [g(P P,) — &,

}, i=1,2,...,N, (107)
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where it is assumed that Vo > (4/3)7 Zf\_]__l R?. The
corresponding first integral is

Z R3 = const.
‘L

Let us normalize Egs. (103) and (104), and, corre-
spondingly, Eqs. (106) and (107) in the following way.
Introduce a new time 7 = (d — 1)u, ft and pressure

4dmug(ug —

P —
3VOU1 8u2

(108)

g(P — P,)
f(d—1)

(recall that d = 2 and 3 for two and three dimensions,
respectively). Then we can rewrite Egs. (103)—(105) as

Ap =

N
dAp
dR; 1
“1 = A —_ = .
d'r p ; b 2 1’27 ’N7 (110)
and
N
2 _
Ap + 3 Z R; = const, (111)
while Eqgs. (106)—(108) are rewritten as
N N
dAp 2
— =€ (Apiz_;Ri - ;Ri) , (112)
dR; 1
= - =12,..,.N 113
dT' Ap R," b 7 ) b I k) ( )
and
N
Ap + 3 ; R} = const, (114)
where

2wqug(us — u
€= — g 2( 28u2 1)>0
f50u13p

for the two-dimensional case, and

2 _
e _ wguz(uzau uy) >0
FVour 3£

for three dimensions. Note that the scaled equations for
R; look the same in both cases.

Both the two- and the three-dimensional systems have
simple equilibria R; = Ry (that is, N identical drops)
and Ap = 1/Ry, which are unstable with respect to small
variations of the drop radii. Indeed, let R and 6R; be
small perturbations of the radii of the kth and jth drops,
respectively. Linearizing Eq. (110) or (113) for the drops

k and j around equilibrium, and subtracting one from
another, we obtain

< (5B,

1
dr —5Rj)_§g

(6Rr — OR;). (115)
One can see that a small difference in any two drops’
radii will grow exponentially in time. The characteristic
growth time (in the “old” units of time) coincides with
the growth time for a single, radially unstable drop far
from the instability threshold [see, for example, Eq. (94)
for two dimensions]. Furthermore, the growth of the dif-
ference in the radii of any two drops in time persists far
from equilibrium. Indeed, subtracting the j-th equation
(110) [or (113)] from the kth equation, we arrive at

d _ Ry — R;

ar B = Bs) = RiR;

so that |Rr — R;| grows monotonically in time. As a
consequence, the initial ordering of the drop radii (let
it be Ry < Rz < --+ < Rp) persists. On the other
hand, the total area (correspondingly, the total volume),
occupied by the drops is always finite. (This can be easily
seen if we express the time derivative of the total area,
using Eqgs. (110) and (111) [correspondingly, Eq. (113)
and (114)].) It follows that at least one drop must be
shrinking. Preservation of the size ordering in the process
of interaction means that it is the smallest drop, that is,
drop 1, whose radius first reaches zero. It is important
that this singularity develops in a finite time, so that
the smallest drop disappears, and the number of drops
becomes N — 1. At this stage (after the singularity),
we have to redefine the “initial conditions” and the first
integral, then employ the same arguments, and so on.

Therefore the dynamics of an ensemble of drops pro-
ceeds as a “harsh” competition mediated by the time-
dependent pressure of the system. The smallest drop
shrinks and disappears first. Then goes the second small-
est drop, etc. The process continues until only one drop
(the largest) remains [36]. The same result is valid for an
ensemble of N bubbles. This type of dynamics, when
larger drops thrive at the expense of smaller ones, is
known in the dynamics of first-order phase transitions
as Ostwald ripening [37].

B. Many drops’ statistics: universal scalings
and self-similar distributions

Now let us assume that a large number of drops,
N > 1, has developed in the earlier conductive stage.
Then we can introduce the (time-dependent) distribution
function of the drops with respect to their radii, F(R, 7).
Consider the three-dimensional geometry. By definition,
Jo F(R,7)dR = n(r), where n(r), the number of drops
per unit volume, is a continuous function of the scaled
time 7.

The distribution function must satisfy the continuity
equation in the space of radii,

g+i(RF) 0, R:Ap—l.

or  OR R (116)
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The first integral (114) can be rewritten as

Ap + %Q / R3F(R,7)dR = Q = const, (117)
0
where
L 1C Tl VY
ful'gﬁz

Equations (116) and (117) represent a closed set. Given
the initial conditions F'(R,0) and Ap(0), they determine
the whole evolution of the system up to the times when
the number of drops becomes small, and the statistical
description fails. In this formulation the problem is very
similar mathematically to the classical problem of the ki-
netics of diffusive decomposition of supersaturated solid
solutions, studied in the pioneering work by Lifshitz and
Slezov [34]. The main difference lies in the expression for
R, which in their case included an additional factor 1/R.
The general approach of Lifshitz and Slezov was adopted
in many other systems showing Ostwald ripening (for a
recent bibliography on Ostwald ripening theory, includ-
ing an account of the volume fraction effects, see [38-42]).
Among them, Wagner [35] was the first to consider a dif-
fusively decomposing system with a chemical reaction on
the interphase surface. It appears that the corresponding
(scaled) equations of Wagner exactly coincide with our
Eqgs. (116) and (117). Therefore we will be quite brief
in presenting the results, except those which differ from
those of Wagner.

The theory of Lifshitz and Slezov predicts that, for
sufficiently large times, any extended distribution func-
tion of the drops with respect to their radii approaches
a universal self-similar form, which represents an inter-
mediate asymptotics of the problem. For our system,
the general self-similar distribution function is F(R,7) =
772®(R/T/?) [43], while the scaled pressure mismatch
Ap decreases as Br~1/2. This implies that the “drop
concentration” n decreases as 77 —3/2, while the average
drop radius

e fooo RF(R,T)dR

- [ F(R,7)dR

grows as x71/2. The positive coefficients 7, x, and 3 are
uniquely determined by the function ®(¢):

o = do €20t

n= [ e©u x="teo

Jo €2(§)d¢
Jo g2@()de’

The function ® satisfies an ordinary differential equa-
tion of the first order and a normalization condition,
which one obtains from Egs. (116) and (117). As the rel-
ative contribution of the pressure mismatch in the conser-
vation law (117) goes to zero for large times, the normal-
ization condition requires simply that the total volume
occupied by the drops be preserved, which leads to

and (=

3Q

. (118)

oo
[ ev©u=
0
The differential equation for ® can be integrated by sep-
aration of variables, and we arrive at the following ex-
pression:

®(¢) = const x &|¢2 — 2B¢ + 2|_5/2

¢ d
X exp (—3[3/ EL-—zgm) .

Further calculations depend on the number of real roots
of the quadratic polynomial entering the integrand’s de-
nominator. If 0 < 8 < \/5, it has none. In this case
®(¢) from Eq. (119) is extended (that is, exists on the
whole interval 0 < £ < o0o) and falls as £7% as £ — oo.
It follows that the normalization integral (118) diverges
logarithmically, which rules out this case.

In the special case of 8 = /2 (two equal roots, & =
& = V/2), we arrive at the solution found by Wagner [35]:

3v2 ) (120)

(119)

®(€) = const x £(vV2 — &) Sexp (__\/5_ ;

for ¢ < /2, and ®(¢) = 0 elsewhere. The constant is
determined by the normalization condition (118). This
solution vanishes at £ = /2 together with all its deriva-
tives. For the Wagner solution we have x = (8/9)v/2.
Extending the arguments of Lifshitz and Slezov [34,44]
to this case, one can assume that this particular solution
will be the attractor of any extended initial distribution.

Now let us proceed to the case of 3 > /2, when the
polynomial has two different real roots,

glzﬂ—Vﬂ2~27 &2::6'}”\/,82—27

both of them positive. Formal integration in Eq. (119)
yields

_g+L ~g_’_:;;sz
B (&) = const x £[&1 — | 2VBT2 ¢y — €| 2v/B% 3
(121)

We can easily construct a positive, nonsingular solu-
tion, if we use Eq. (121) on the interval (0,&;) and
put ®(¢) = 0 for £ > &. The condition ®(£;) = 0 re-
quires that 8 < 5v/2/4 (otherwise, ® diverges at £ = &)
[45]. Therefore we arrive at a one-parametric family of
self-similar distribution functions. The whole family is
defined on a quite narrow interval of the parameter 3,
V2 < B < 5v/2/4, the left boundary of which corre-
sponds to the Wagner solution. The distribution func-
tions (121) vanish at £ = £;, but their derivatives are
generally nonzero there. These solutions were missed
by Wagner. (Similar localized distributions can be con-
structed in the problem of Lifshitz and Slezov [34] as well,
as was shown by Brown [46].)

Notice that the exponents of the power laws of the
pressure mismatch, drop concentration, and average drop
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radius as functions of time are independent of 3. How-
ever, the coefficients (3,7, and x in the corresponding
power laws (and, of course, the shape of the distribution
function) vary with 8. An important question is which

* of these self-similar distributions will actually develop, if
one starts from a prescribed initial distribution. As sug-
gested above, it is the Wagner solution which finally sets
in for an extended initial condition. The case of local-
ized initial conditions requires an additional analysis and
will be addressed elsewhere. (Similar questions of the
realizability of different self-similar solutions have arisen
recently for the Lifshitz-Slezov case, where they are the
object of much controversy [40,41].) It is important to
recall that, no matter what the precise form of the “in-
termediate” self-similar solution is, the final state of the
dynamics must be a single drop (bubble), as shown in
Sec. VIA.

VII. NUMERICAL SIMULATIONS

The aim of our two-dimensional numerical simulations
was to substantiate the “super-reduced” conductive re-
laxation model and verify some of the analytical results
presented in the previous sections. We worked with the
reduced model, described by Egs. (22)-(24) and (26)
and the boundary conditions (8) and (25). However, in-
stead of the Euler equation (23) we employed the follow-
ing much simpler equation for the velocity field:

v =uV. (122)
As has been shown in Sec. IV, this relation becomes ac-
curate close to equilibrium. Essentially, we arbitrarily
extend it to the whole dynamics. [It appears, however,
that the front-curvature-dominated dynamics is quite in-
sensitive to the details of the velocity field. For example,
when instead of Eq. (122) we used a purely potential
flow, v = V1), the results looked qualitatively the same.]

We found it convenient to rewrite the continuity equa-
tion (22) as a parabolic equation for u, expressing V - v
from Eq. (24) and using Eq. (122):

P

Ou

- = 2, —_
5c = Y Viu — A(u, P)

(123)
where we put @ = 0. Using again Egs. (22) and (122),
we obtain a Poisson equation for :

__ow™)
Vi = =

Finally, the global pressure equation (26) becomes

P 1 L L

Equations (123)—(125) were solved in a square domain
L x L with no-flux boundary conditions (in one case
we employed periodical boundary conditions; see below).
We varied L from 35 to 60, so that L was always much
larger than the conductive Field length (that is, unity in

(124)

(125)

the scaled variables). We put v = 5/3, and employed a
simple bistable heating-cooling function from AMS:

A(u, P) = [u — u1(P)][u — uu(P)][u —uz(P)]  (126)

with u; = 1/(2P),u, = P, and uy = 2/P. In this case,
the area-rule value of the pressure is P, = \/5/2 ~ 1.118,
while g = 24/2 ~ 2.828 and f = 1.

The differential operators entering Eq. (123) were eval-
uated by the pseudospectral method using a fast Fourier
transform. We employed a split-step method, extracting

an “effective” linear part of the differential operator in
the right-hand side (RHS) of Eq. (123):

FIG. 3. Background-mediated competition between two
drops, studied numerically. We started with two drops
(v = w1) in the “vapor” (u = u2) for the initial pressure
1.2. The dimensions of the system are 60 x 60. Shown are the
specific volume contours at t = 5 (a), 45 (b), and 100 (c).
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%i: = u.VZu + (u— uc)Vzu

—u | A(u, P) + ’yiP — VyVu (127)

with u. = (u1 + u2)/2. For the diffusion operator u.V?u
we used the exact analytical solution, while the remain-
ing, nonlinear part of the RHS was calculated approx-
imately. We performed the calculations on the square
grid 256 x 256.

The values of u were updated according to the follow-
ing algorithm:

u(t +7) = exp [%f(t)] exp(Tu.V?) exp [gf(t)} u(t),
(128)
where
f(t) = [1 - u’zz)] V2u(t) — Alu(t), P]
RO “
+’7P(t) V() Vu(t).

The operator exp(ru.V?2) was evaluated in the Fourier
space. Equations (124) and (125) were solved at each
time step using the values of u(t) and P(t) from the pre-
vious time step.

This numerical code turned out to be quite accurate,
stable, and economical. At each time step we monitored
the accuracy by checking the mass conservation

L L
M = / / u~ ! dz dy = const.
o Jo

1.19

1.18 E

117

1.16 | 1

1.15

0 20 40 60 80 100
1

FIG. 4. Background-mediated competition between two
drops, studied numerically. Shown is the pressure history for
the same run as in Fig. 3. The peak at t ~ 57 corresponds
to the time moment of the disappearance of the smaller drop.
The pressure finally approaches 1.15, which agrees with the
surviving drop’s radius in Fig. 3(c).

In all our runs this integral was preserved up to the third
decimal place.

In all simulations we started from some density profile
and a zero velocity. In the test simulations (not shown
here), we started from a single drop of a moderate size
(a few times smaller than the size of the domain Q, but

FIG. 5. Slab-type equilibrium, developing from a broad-
band noise. We started from a small-amplitude multimode
perturbation of w around uo = 0.9. The initial pressure is
1.0; the dimensions of the system are 40 x 40. Shown are the
specific volume contours at ¢ = 10 (a), 20 (b), and 250 (c).
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a few times larger than the conductive Field length) and
were able to verify the analysis of the radial stability of a
single drop presented in Sec. V C. We checked the main
results described by Egs. (90) and (91) [including the
minimum radius of a stable drop, Eq. (93)] and found
that these equations indeed describe the dynamics with
a good accuracy.

Further simulations concerned the dynamics of a sys-
tem of two or more drops with different radii. The re-
sults of Sec. VI A predict background-mediated compe-
tition between the drops and survival of the larger one.
Figures 3 and 4 show the two drop dynamics, obtained
numerically. (In these simulations we employed period-
ical boundary conditions.) It is seen from Figs. 3(a)-
3(c) that the smaller drop shrinks and disappears as pre-
dicted, the larger drop and “vapor” thriving at its ex-
pense. Figure 4 shows the corresponding pressure his-
tory. The pressure is falling in the beginning, shows a
pronounced peak close to the moment of the smaller drop
disappearance, and finally approaches 1.15. Calculating
the equilibrium radius R.q from the relation

oP-P)-L =0,

we obtain R., ~ 11, which is quite close to the visible
radius of the drop in Fig. 3(c) (note that L = 60 in this
run). Noticeable in Fig. 3 is an almost ideal preservation
of the circular form of the drops which justifies the as-
sumption of a purely radial interaction of the drops used
in Sec. VI A. In a separate simulation (not shown here),
we started with three drops of different radii and ob-
served shrinkage and disappearance of the smallest one,
followed by shrinkage of the next smallest.

In the next series of runs (Figs. 5-8), we started from
a broadband “noise:” a small-amplitude multimode per-

| —————
1.05 |
Q.
0.95
0.85 .
100 200

t

FIG. 6. Slab-type equilibrium, developing from a broad-
band noise. Shown is the pressure history for the same run
as in Fig. 5. The pressure first jumps to 0.9 (so that the RCI
starts to develop) and finally approaches the area-rule value
P, =1.118.

turbation du(z, y) around a uniform state ug. To develop
radiative segregation, the value of o must be somewhere
between u; and us, and not too close to them. In the be-
ginning (stages 1 to 3 of the dynamics), the results always
look similar to the one-dimensional case (see AMS). First,

FIG. 7. Drop-type equilibrium, developing from a broad-
band noise. We started from a small-amplitude multimode
perturbation of u around uwe = 1.4. The initial pressure is
1.2, the dimensions of the system are 35 x 35. Shown are the
specific volume contours at ¢t = 0 (a), 20 (b), and 180 (c).
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FIG. 8. Drop-type equilibrium, developing from a broad-
band noise. Shown is the pressure history for the same run
as in Fig. 7. The pressure first jumps close to 1.4 (so that
the RCI starts to develop) and finally approaches the value,
corresponding to the equilibrium radius of the forming drop.

the pressure “jumps” to o, so that up quickly becomes an
unstable equilibrium (stage 1). Then the linear stage of
the RCI develops (stage 2), when the pressure is almost
constant. Perturbations with too short wavelengths are
strongly damped [see Eq. (7)], and they are already ab-
sent after a few units of time. In stage 3, strong plasma
segregation develops: higher-density, cooler regions are
formed (phase 1), which are surrounded by lower-density,
hotter regions (phase 2).

We found that the subsequent evolution of the form-
ing patterns proceeds in two different ways (depending
on the initial conditions), and it has no analogs in one-
dimensional theory. In Figs. 5 and 6, where we started
from uo = 0.9, straightening of the interface between
the phases 1 and 2 occurs, and a slab-type equilibrium
develops. Figure 6 shows that the pressure approaches
P, ~ 1.118 in complete agreement with our theory. Also,
the final stage of this straightening is described by the
linearized theory of Sec. V A. In Fig. 5(c), one can
still see a slightly deformed interface, and the deforma-
tion mode is the fundamental, n = 1. By this time the
shorter-wavelength modes n = 2,3, ... have already dis-
appeared, as their damping rates (77) are 4, 9,... times
higher.

In contrast, Figs. 7 and 8 (where we started from
ug = 1.4) show the process of formation of a single equi-
librium circular drop. [Actually, Fig. 7(c) shows a quar-
ter of a drop, a compromise between the drop-type equi-
librium and an attached equilibrium, obviously possible
in the square domain.] The circular form of the form-
ing drop supports our theoretical prediction of the drop
stability with respect to azimuthal perturbations (Sec.
VB). Also, the final (equilibrium) pressure agrees with
the drop radius and is predicted quite accurately by the
initial conditions.

In a separate simulation (not shown) we organized
competition between a slab and a drop. We found that
the slab wins. As for numerical simulations of the statis-
tics of a large number of drops, this problem requires
special study, and we did not attempt to address it in
the present work.

Therefore we were able to reproduce numerically both
types of large-scale equilibria predicted by our the-
ory, and verified the stability analysis based on the
super-reduced equations. Also, we observed background-
mediated competition between “drops” (Ostwald ripen-

ing).

VIII. SUMMARY AND DISCUSSION

We have considered the front-curvature effects in the
radiative segregation of a confined isotropic thermally
bistable plasma. We assumed that the characteristic di-
mensions of the plasma are much larger than the con-
ductive Field length, but much smaller than the acoustic
Field length. This double inequality has made it pos-
sible to consistently reduce the full fluid dynamic set of
equations for the problem and advance significantly in its
analysis.

The front-curvature effects become dominant in the
final stage of the dynamics, when the radiative segrega-
tion has already been established, the plasma pressure
is close to the area-rule value P,, and the interface mo-
tion slows down (see AMS). Then, on the characteris-
tic time scale 73, which is proportional to the square
of the size of a typical pattern, the curvature effects
lead to smoothing of patterns and simplification of their
form. The time scale 72 is much longer than the time
scale 71 of the pressure relaxation, which was obtained
in the one-dimensional theory of AMS. We have found
that the possible types of equilibrium patterns are de-
termined by the condition of a constant sum of the two
principal curvatures of their surfaces, showing somewhat
unexpected similarity to the classical problem of equilib-
rium of weightless capillary surfaces. Therefore the sim-
plest individual equilibrium clouds or voids in this system
are perfect slabs and spheres, two and three dimensional.
We analyzed the stability of these objects with respect
to various types of perturbations. We have found that
small perturbations of the perfect shape of the equilib-
rium patterns are damped out. On the other hand, we
have discovered an instability of a single spherical cloud
(which we call a drop) with respect to purely radial per-
turbations. We have determined the minimum radius of
a stable equilibrium drop. Smaller drops either shrink
and disappear or expand until they reach a new, stable
equilibrium. Also, we have studied background-mediated
competition (Ostwald ripening) in an ensemble of drops.
Larger drops always thrive at the expense of the smaller
drops, and only the largest drop can finally survive. We
found a one-parameter family of “universal” self-similar
distribution functions of the clouds with respect to their
sizes and corresponding power law time dependences of
the pressure mismatch, cloud density, and average cloud
radius. It is important that solving the self-similar prob-
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lem alone does not provide any selection rule for the pa-
rameter 3 characterizing the family of solutions, so that
other considerations (initial conditions and stability ar-
guments) must be invoked. Also, it should be stressed
that the self-similar solutions represent an intermediate
asymptotics of the dynamics, as finally only the largest
cloud survives.

Numerical simulations performed with the reduced
model [with the Euler equation replaced by its simplified
version (122)] have confirmed many of the predictions of
our theory. In addition, we have found that the two sim-
ple types of segregated equilibria predicted analytically
(slab and drop) can be reached from a variety of initial
conditions, so that these objects have extensive basins of
attraction in the parameter space.

The original motivation behind the studies of the ra-
diative condensation instability and related segregation
processes in optically thin plasmas was to explain the
strong inhomogeneities observed in many astrophysical
plasmas (such as interstellar and intergalactic clouds and
voids, and solar prominences) [1-4] and, more recently,
radiative condensations in laboratory plasmas [5]. We
have found that a variety of stable, strongly segregated
equilibria is indeed possible and attainable in confined
plasmas (in contrast to isobaric plasmas, where the final
state is usually uniform). Of course, the simple “perfect”
objects, which we have found to be in stable equilibrium,
cannot explain the frequently observed complexity in the
geometric shapes of interstellar clouds and voids [1,17].
Some of the observed complexity might be related to ear-
lier, more violent stages of the dynamics, long before any
equilibrium is reached. Indeed, the evaporation fronts’
instability of the Darrieus-Landau type, that we consider
in Appendix A, can lead to much more complicated (even
fractal) shapes. Finally, however, the pressure must ap-
proach the area-rule value, and the curvature effects will
smooth and simplify the patterns, so that a later stage of
the dynamics must be of the type considered in the main
body of our paper.

Obviously, more complicated patterns might also ap-
pear, if one relaxed the assumptions of isotropy of the
plasma motions and heat conduction (both of which are
quite unrealistic in view of the complicated magnetic
fields permeating the interstellar plasma [17]). Other
effects that we neglected (gravity, rotation, ionization-
recombination dynamics, etc.) will also influence both
the possible equilibria and the relaxation towards them.
Now that a reasonably good understanding of the ba-
sic multidimensional problem of radiative segregation has
been achieved, all these questions are worth studying.
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APPENDIX A: DEFORMATION INSTABILITY
OF EVAPORATION FRONTS

We have seen that the characteristic duration 75 of
the late, curvature-controlled stage of the dynamics is
proportional to the square of the pattern dimensions.
In this stage, the pressure mismatch is already small,
|P — P,| ~ (K) < 1, and the front motion slows down
significantly. Earlier stages of the dynamics correspond
to much larger |P — P,| and are characterized by faster
front motions. These motions (evaporation and conden-
sation fronts) were considered in many works (see Refs.
[18,19,10,12]) in the one-dimensional geometry. Indeed,
when |P — P,| > (K), the front motions can be treated
as almost planar. However, a traveling planar interface
can in general be unstable with respect to small deforma-
tions of its shape, which should be described in the three-
dimensional theory. We found this stability problem to
be quite similar to the well known hydrodynamical stabil-
ity problem for a laminar flame propagation which was
investigated in the pioneering works by Darrieus, Lan-
dau, and Markstein (see Refs. [32,47-49]). These works
predict instability for sufficiently long perturbation wave-
lengths [the so called Darrieus-Landau (DL) instability].
At short wavelengths, the instability is suppressed by
the Markstein effect, related to the perturbation-induced
front curvature. The similarity between our problem and
that of the DL instability becomes clear when one notices
that the unperturbed state in both cases consists in a
relatively slow (subacoustic) heat and mass flow through
a hydrodynamic discontinuity. The main difference be-
tween the two problems is the following. In the lami-
nar flame stability problem, the sign of the material flux
through the front j, is unique (and, in our notation, pos-
itive), while in our problem it can be either positive or
negative, depending on the sign of the mismatch P — P,.
In the following we develop a linear stability theory for
moving condensation or evaporation fronts. We assume
that the dimensions of the system are infinite, so that the
pressure mismatch P — P, is constant (the corresponding
criterion will be checked a posteriori).

Let us consider an unperturbed planar front, which
is located at the plane = 0 of a Cartesian coordinate
system, moving together with the front. A half-space
x > 0, indexed by D, is assumed to be downstream, and
a half-space ¢ < 0, indexed by U, is upstream. Indices
U and D will also be used for various physical quanti-
ties in the U and D regions, respectively. Depending on
the sign of P — P,, there are two cases. In the first one
P > P,, phase 1 is downstream, phase 2 is upstream,
and j, < 0. In the second P < P,, phase 2 is down-
stream, phase 1 is upstream, and j, > 0. Therefore we
can write the unperturbed normal vector n (see Sec. III)
as (sgnjn,0,0). Other unperturbed values are the fol-
lowing: ¢, = 0; vy/u = const = j = |j,| = g|P — P.| (the
mass flux across the front in the downstream direction);
v; n = ju;(P) = v;; vy = 0 (the index 7 stands for D
or U); K = 0; and e; = (0,sgn j,,0) (the unit tangential
vector).

Let the function F(z,y,z,t) = = — ((y,2,t) = 0 de-
scribe a (weakly) perturbed position of the front. As the
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unperturbed state is the stationary one and possesses
translational and axial symmetries, the dependence of
all physical quantities upon (y, z,t) can be chosen pro-
portional to exp(gt + ikyy). Denote these linear pertur-
bations (differences between the perturbed and unper-
turbed quantities) by ’. Then

n' = (0,

—iky(,0) sgn jn , = (tky(,0,0) sgn j, ,

! — ! .
Vin =Y; zlz:O SgN 7n

U:: t = v;;lm:Oet + vi|z=0e; = ('ka'uzc + 'Uzi' yim:O) Sgnjn )

¢y, = qCsgnjn ,

K' = k2Csgnjn and jj = fk2Csgn jn

[the expression for j, is obtained from Eq. (49)]. Lin-
earized forms of the matching conditions (42)—(44) are

v o = aC + fupk?(, (A1)

vy » = ¢ + fuukZ(, (A2)

ikyvu¢ + vy , = itkyvpC + v o, (A3)

By + 2flinluv k¢ = Fp + 2flinlupkyC.  (A4)
Linearization of Egs. (39) and (40) yields

divv, =0, (A5)

qv; + vi%vg = —uig—i,ez — tukyp'ey, (A6)

for the regions Qy and Qp. Here ¢ = U, D or 1,2. Equa-
tions (A5) and (A6) have the following general solution:
v, , = A;exp(gt + |ky|z + tkyy)
+B; exp(gt — |ky|z + ikyy)

+C; exp(gt — qx/v; + ikyy), (A7)
12 . ky .
Uiy = zT]—c-—lA,- exp(gt + |ky|z + tkyy)
y
. ky .
—szi exp(qt — |ky|z + tkyy)
v
_ kqv' C; exp(qt — qz/v; + ikyy), (A8)
y Vi
- 1
P = - |k |(|k y|vi + @) A; exp(gt + |kylz + tkyy)
Ik l(|l<: y|vi — q)Biexp(gt — |ky|z + ikyy),
(A9)
where A;, B;, and C;, are arbitrary constants. Since p’

must vanish at |z| — oo, and curl v = 0 in the upstream
half-space, i.e., z > 0 [50], we obtain

v = Bexp(gt — |ky|z + thyy)

+C exp(qt — qz/v; + tkyy), (A10)

vy, = Aexp(gt + |ky|z + ikyy), (A11)
k
Vp 4 = ——iTI::y_]B exp(gt — |ky|z + ikyy)
y
- C exp(qt — gz /v; + ikyy), (A12)
y”D
k,
VY oy = zmAeXp(qt + |ky|z + tkyy), (A13)
- 1 .
Pp = ———(a = |kylvp) B exp(qt — |ky|e + ikyy),
up|ky|
(A14)
_ 1 .
Py = — —— (a4 + [ky|vv) Aexp(gt + |ky|z + ikyy).
uy |ky|
(A15)
Substituting Egs. (A10)-(A15) in Egs. (Al)-(A4),

we obtain a linear homogeneous system of four equa-
tions with respect to the four unknown parameters
A, B, C, and (. The solvability condition of this sys-
tem gives a cubic equation with respect to ¢g. One root
of this equation, ¢ = |ky|vp, describes, however, a trivial
solution v/ = p’ = ¢ = 0. Therefore we are left with the
following quadratic dispersion relation:

k|in k . -
4 + 2 | g u1ua <1+f_)+ 22 W0~ D

upu
Uy + uz [Tnl "wy+up 00
+2£k3|jn] upur_ _ (A16)

where k = |k,|. The real part of one of its roots is always
negative [51], while the other root,

ki
Jui1U2 [1+ ff
Uy + Uz J

212
\/1+ka +<1—@ e )sgn]n—zﬁu—D

Uy U2 J Uu

(A17)

can have a positive real part, which corresponds to in-

stability. Indeed, one can see that evaporation fronts [for

which always j,, = g(P.—P) > 0] are unstable (Re ¢ > 0),

if the perturbation wavelength is sufficiently large:
1 jn U1 vz — Uy

O0<k<ky=-——

. A18
2 f us us +up ( )

The maximum growth rate can be estimated as ¢ ~
up2j2/f ~ (P — P.)2. It goes to zero with the pres-
sure mismatch. When P > P,, one has Reg < 0, so that
condensation fronts are always stable.

Expression (A17) is very similar to the growth rate of
the DL instability. In particular, condition (A18) corre-
sponds to the curvature stabilization of the DL instabil-
ity (Markstein effect). It is essential that f > 0 in our
problem, so that no analogs of the thermodiffusive flame
instability [49] (or Mullins-Sekerka instability in solidifi-
cation [52]) appear.
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Now we can check our assumption that the pressure
difference P — P, remains constant. This assumption
is valid if the characteristic growth rate of the DL-type
instability is much higher than the typical inverse time
71 ! of the pressure relaxation towards P,. Assuming that
neither u; nor ug introduces large or small parameters,
we can write this inequality as |P — P,| > 1/(L), where
(L) is the typical size of patterns. Correspondingly, an

opposite inequality is a necessary criterion for the validity -

of the stability analyses presented in the main body of
the paper.

Nonlinear effects of the DL instability in flame front
dynamics were considered in a number of works, starting
from the original work of Landau [53]. The instability
tends to increase the front’s area, which leads to front
acceleration. In the extreme case, the front surface can
even become fractal [49]. Presently, there are attempts to
calculate the fractal dimension of the flame front surface
[54,55]. All these questions are relevant in the dynamics
of evaporation fronts as well; however, they are beyond
the scope of this paper.

Let us briefly summarize the results of this Appendix.
Condensation fronts are always stable with respect to
the deformation (DL-type) instability; therefore the
curvature-dominated dynamics for such patterns, consid-
ered in the main body of the paper, is unchallenged. In
contrast, the dynamics of evaporation fronts can be very
complicated at an earlier stage of the evolution. How-
ever, even in this case the latest stage of the dynamics
will be dominated by curvature, as the pressure finally
approaches P, and the growth rate of the DL-type insta-
bility goes to zero.

APPENDIX B: NONSPHERICAL DROPS
AND BUBBLES

In this Appendix we present a formal derivation of Eq.
(33) with K defined in Eq. (36) for “smooth” large-scale
interfaces. Let us define a new quantity R, which repre-
sents the minimum of the following quantities: the ab-
solute values of the principal curvature radii of the in-
terfaces, distances between different interfaces, distances
between different “remote” parts of the same interface,
and distances between the interfaces and the boundaries
of the box. We assume that R > 1. Let us consider Eq.
(27). Neglecting effects exponentially small with respect

toR essentially means that we consider, instead of ex-
act solutions, some “quasisolutions,” which, according to
definition, satisfy the following relation at R — oo:

V- (u*Vu) — P *A(u, Peg) = O, , (B1)
where O, goes to zero faster than any power of 1/R at
R — co. In other words, we are looking for smooth large-
scale solutions, describing quasiequilibrium states of the
bistable plasma. In fact, such a state evolves in time.
However, this evolution is ezponentially slow, which keeps
these solutions in the state of “quasiequilibria.”

As R — oo, the nonlinear eigenvalue problem for Eq.
(B1) with the boundary condition (25) can be treated

perturbatively. As usual, the zero approximation is pro-
vided by the planar eigenvalue problem

— P_%A(u, Pog) =0, =0. (B2)

d:l)u +oo
Let ¥ be a smooth surface, approximating the interface,
dividing the phases 1 and 2, and let |s(x)| be the distance
between any point x and the interface. We shall take s
positive if x is located at the side corresponding to the
phase 2, and negative in the opposite case. Let A(x) € ¥
be the corresponding point on the surface X, closest to
the point x. We can consider the set of pairs (4,s) as
a local coordinate system in a (sufficiently large) region,
close to the surface ¥. [Outside this region, we can put
U(Peq,X) = uy,2(Peq).] Also, we can choose n = Vs as
the “smooth” unit vector field, entering Eq. (36). Let us
look for a solution of Eq. (B1) in the following form:
U(Peq,X) = u(o)(Px, 8) + u(1)(4,s) , (B3)
where u(o)(Py,s) is the solution of Eq. (B2) with the
boundary conditions w)(Ps,+£0) = uz 1(P,), corre-
sponding to the eigenvalue P = P, (see, e.g., AMS),
w1y = O(1/R), and P.q — P, = O(1/R) as R — oo.
The “longitudinal” component of the gradient of wu(y)
is Ou(;)/8s = O(1/R) for |s| ~ 1, and exponentially
small for R > |s| > 1. The “transverse” component
of the gradient of u(Peq,x) is the following: (n x Vu) =
(n x Vugy) ~ O(l/ﬁz), that is, of the next order of
smallness. Therefore s and A can be considered as “fast”
and “slow” variables, respectively. Let us substitute Eq.
(B3) into Eq. (B1). Being interested in the first-order
correction to P4, we arrive at the following equation:

1 ) 2 1+a a 9 —a
ita (%) u T 4+ Ku au—}—Peq Au, Py)

+P;%u(u)(Peg — P.) = O(1/R’) , (B4)

where K = (div n)‘ . The origin of the second term in
s=

0
the left hand side of Eq. (B4) (this term is of the order
of 1/R) can be seen from the following calculation:

V- {[w0)(9)]” Vo) ()}

o« 7]
=V [stom () o
9 a 9 @ o
=5 (u(o)am())) + [u(0)(s)] (dlvn)ggum), (B5)

where wuoy = u()(Px,s). Multiplying Eq. (B5) by
u®*(Ou/0ds) and integrating the resulting equation along
those “field lines” of the field n which cross the surface
Y}, we obtain
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—a e a du 0
+P;%(Peg — P.) / ufoy(u(o) 2 de

= 0(1/R’) . (B6)

To arrive at Eq. (B6), we have used the exponential
smallness of du /s at large distances from the surface .
Also, we have replaced (under the integral) the functions

u and Ou/0s by their zero-order values u gy and du () /9s,
respectively, in the two terms which are of the first order
of smallness with respect to 1/R. Finally, since u(o) () is
the solution of the eigenvalue problem (B2) with P = P,,
a zero-order term vanished due to the area rule (30).
Equation (B6) leads directly to Eq. (37) with X =

(div n)' = 1/R,+1/R; (the last identity is well known
8=0

in differential geometry; see, e.g., [29]). One can see that
Eq. (33) is an expansion of some “exact” formula in the
powers of 1/R. Also, as in many other eigenvalue prob-
lems, finding the first-order correction to the eigenvalue
P,, proves to be much easier than finding the correspond-
ing correction to the eigenfunction itself.
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FIG. 3. Background-mediated competition between two
drops, studied numerically. We started with two drops
(v = uy) in the “vapor” (u = wu2) for the initial pressure
1.2. The dimensions of the system are 60 x 60. Shown are the
specific volume contours at ¢t = 5 (a), 45 (b), and 100 (c).



FIG. 5. Slab-type equilibrium, developing from a broad-
band noise. We started from a small-amplitude multimode
perturbation of u around uwp = 0.9. The initial pressure is
1.0; the dimensions of the system are 40 x 40. Shown are the
specific volume contours at ¢ = 10 (a), 20 (b), and 250 (c).



FIG. 7. Drop-type equilibrium, developing from a broad-
band noise. We started from a small-amplitude multimode
perturbation of u around uo = 1.4. The initial pressure is
1.2, the dimensions of the system are 35 x 35. Shown are the
specific volume contours at ¢t = 0 (a), 20 (b), and 180 (c).



